Science:Math Exam Resources/Courses/MATH103/April 2014/Question 01 (d) ii
• Q1 (a) • Q1 (b) i • Q1 (b) ii • Q1 (c) i • Q1 (c) ii • Q1 (c) iii • Q1 (d) i • Q1 (d) ii • Q1 (d) iii • Q1 (e) i • Q1 (e) ii • Q2 (a) • Q2 (b) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (c) • Q7 (a) • Q7 (b) • Q7 (c) • Q8 (a) • Q8 (b) • Q9 (a) • Q9 (b) • Q9 (c) • Q10 (a) • Q10 (b) • Q10 (c) • Q11 •
Question 01 (d) ii |
---|
Let’s assume the size of a microbial population (in millions) at time (hours) is determined by the differential equation . True or false: if the initial population is , then the population will converge to the stationary state as . |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Use the result of part (i). |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. If the initial population is , then it will be forever, as 0 is a steady state. The statement is false. |