Science:Math Exam Resources/Courses/MATH103/April 2010/Question 01 (c)
{{#incat:MER QGQ flag|{{#incat:MER QGH flag|{{#incat:MER QGS flag|}}}}}}
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q2 • Q3 (a) • Q3 (b) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q7 (c) • Q8 •
Question 01 (c) |
|---|
|
Multiple Choice Question: Exactly ONE of the answers provided is correct. There is no partial credit in this question. The expression is the first three terms of a Taylor series for: |
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
|
If you are stuck, check the hints below. Read the first one and consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! If after a while you are still stuck, go for the next hint. |
Hint 1 |
|---|
|
Recall the Taylor series expansion for , , and . |
Hint 2 |
|---|
|
|
|
Checking a solution serves two purposes: helping you if, after having used all the hints, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution 1 |
|---|
|
Following the hints we can just plug in the argument of the functions and calculate Hence, the correct answer is v. |
Solution 2 |
|---|
|
A clever way of doing this problem is to consider the following:
|
{{#incat:MER CT flag||
}}
