Science:Math Exam Resources/Courses/MATH101 C/April 2024/Question 18 (b)
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 • Q2 • Q3 • Q4 • Q5 • Q6 • Q7 • Q8 • Q9 • Q10 • Q11 • Q12 • Q13 • Q14 • Q15 • Q16 (a) • Q16 (b) • Q17 (a) • Q17 (b) • Q17 (c) • Q17 (d) • Q18 (a) • Q18 (b) • Q18 (c) • Q19 • Q20 (a) • Q20 (b) • Q20 (c) •
Question 18 (b) |
---|
First find the limit , and then find . |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Science:Math Exam Resources/Courses/MATH101 C/April 2024/Question 18 (b)/Hint 1 |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
As gets big, so does , which means that gets very small. Therefore, Let us use this to solve for : Let us use the piecewise formula for to find the value such that . If , the equation we are trying to solve becomes , which of course does not have a solution. If , it becomes , which does have a solution: Luckily for us, this solution is indeed greater than . Thus, . |