Science:Math Exam Resources/Courses/MATH152/April 2015/Question B 2 (b)
{{#incat:MER QGQ flag|{{#incat:MER QGH flag|{{#incat:MER QGS flag|}}}}}}
• QA 1 • QA 2 • QA 3 • QA 4 • QA 5 • QA 6 • QA 7 • QA 8 • QA 9 • QA 10 • QA 11 • QA 12 • QA 13 • QA 14 • QA 15 • QA 16 • QA 17 • QA 18 • QA 19 • QA 20 • QA 21 • QA 22 • QA 23 • QA 24 • QA 25 • QA 26 • QA 27 • QA 28 • QA 29 • QA 30 • QB 1(a) • QB 1(b) • QB 1(c) • QB 2(a) • QB 2(b) • QB 2(c) • QB 3(a) • QB 3(b) • QB 3(c) • QB 4(a) • QB 4(b) • QB 4(c) • QB 5(a) • QB 5(b) • QB 5(c) • QB 5(d) • QB 6(a) • QB 6(b) • QB 6(c) •
Question B 2 (b) |
|---|
|
Let be the matrix
|
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
|---|
|
To find eigenvalues, solve the characteristic equation. |
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution 1 |
|---|
|
In order to find other eigenvalues, we solve the characteristic equation
Thus we have After simplification, we obtain ; we know of the eigenvalue from part (a), and the others are |
Solution 2 |
|---|
|
Let denote the three roots of the characteristic polynomial of (counted with multiplicity). We recall from part (a) that is one of the roots. Moreover, and . Thus and Hence and . We find that , as in the first solution. |
{{#incat:MER CT flag||
}}
