Science:Math Exam Resources/Courses/MATH152/April 2015/Question A 10
• QA 1 • QA 2 • QA 3 • QA 4 • QA 5 • QA 6 • QA 7 • QA 8 • QA 9 • QA 10 • QA 11 • QA 12 • QA 13 • QA 14 • QA 15 • QA 16 • QA 17 • QA 18 • QA 19 • QA 20 • QA 21 • QA 22 • QA 23 • QA 24 • QA 25 • QA 26 • QA 27 • QA 28 • QA 29 • QA 30 • QB 1(a) • QB 1(b) • QB 1(c) • QB 2(a) • QB 2(b) • QB 2(c) • QB 3(a) • QB 3(b) • QB 3(c) • QB 4(a) • QB 4(b) • QB 4(c) • QB 5(a) • QB 5(b) • QB 5(c) • QB 5(d) • QB 6(a) • QB 6(b) • QB 6(c) •
Question A 10 |
---|
Consider the following lines of MATLAB code: A = zeros(10, 10); for i=1:9 A(i, i) = 1/2; A(i+1, i) = 1/2; end A(10, 10) = 1; Circle the answer below that best describes the resulting matrix :
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Recall the following definitions:
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. We see from the first line A = zeros(10, 10); that is initialized as a 10-by-10 matrix of zeroes. In the first iteration of the loop (when i = 1), we set and the entry below it, , to also. Continuing in this manner for , at the end of the loop we obtain where the last two entries modified by the loop are and . We finally set , forming the matrix
which is seen to be left-stochastic, and hence (b) the transition matrix for a random walk. |