Science:Math Exam Resources/Courses/MATH103/April 2015/Question 08
• Q1 (a) (i) • Q1 (a) (ii) • Q1 (a) (iii) • Q1 (b) (i) • Q1 (b) (ii) • Q1 (b) (iii) • Q1 (c) (i) • Q1 (c) (ii) • Q1 (c) (iii) • Q1 (d) (i) • Q1 (d) (ii) • Q1 (e) (i) • Q1 (e) (ii) • Q1 (e) (iii) • Q2 (a) • Q2 (b) • Q2 (c) • Q2 (d) • Q2 (e) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q6 (c) • Q7 (a) • Q7 (b) • Q7 (c) • Q7 (d) • Q8 • Q9 • Q10 (a) • Q10 (b) •
Question 08 |
---|
Find all such that the series converges? |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hints below. Read the first one and consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! If after a while you are still stuck, go for the next hint. |
Hint 1 |
---|
Use the ratio test. |
Hint 2 |
---|
Then, consider the divergence test. |
Checking a solution serves two purposes: helping you if, after having used all the hints, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. First, we use the ratio test. Since we have
when the series converges, while when the series diverges. Since is equivalent with and , we can rephrase that the series converges for and diverges for and .
. Then, we can observe that the sequence doesn't converges to 0 as goes to infinity. Indeed, if we assume that it converges to 0, by limit rule we have the convergence of the sequence at infinity:
However, apparently, this is not true when we expand the sequence :
Therefore, by the divergence test, the given series at diverges.
. Since the sequence doesn't converges to 0 as goes to infinity, so is .
|