Science:Math Exam Resources/Courses/MATH103/April 2012/Question 01 (g)
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q2 (a) • Q2 (b) • Q2 (c) • Q2 (d) • Q2 (e) • Q2 (f) • Q3 (a) • Q3 (b) • Q4 (a) • Q4 (b) • Q4 (c) • Q4 (d) • Q4 (e) • Q4 (f) • Q5 (a) • Q5 (b) • Q5 (c) •
Question 01 (g) |
---|
Answer the following multiple choice question. Check your answer very carefully. Your answer will be marked right or wrong (work will not be considered for this problem). Which of the following is the closest approximation to the value of the integral (Hint: use Taylor series)
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Recall the Taylor series of cos(x) and use just the first two terms for a simplification of the integrand. |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. The Taylor expansion of cos(x) is Keeping the terms up to x2, we get Therefore So 1/4 is a good approximation. Note that taking more terms of the Taylor expansions of cos(x) would simply yield an even better approximation. |