Science:Math Exam Resources/Courses/MATH102/December 2017/Question 12 (a)
• Q1 • Q2 • Q3 • Q4 • Q5 • Q6 • Q7 (a) • Q7 (b) • Q7 (c) • Q8 • Q9 (a) • Q9 (b) • Q9 (c) • Q10 (a) • Q10 (b) • Q10 (c) • Q10 (d) • Q11 (a) • Q11 (b) • Q12 (a) • Q12 (b) • Q12 (c) • Q12 (d) • Q13 (a) • Q13 (b) • Q13 (c) • Q13 (d) • Q14 (a) • Q14 (b) • Q15 (a) • Q15 (b) • Q16 •
Question 12 (a) |
---|
The age of a solid planet can be estimated by calculating the fraction of the surface of the planet that is free of meteor impact craters. Assume that the rate at which the crater-free area decreases is proportional to that area itself. (a) What differential equation does solve? |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Let be the the surface area of the planet. Then, the crater-free area is . |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. By the Hint, is the crater-free area. Then, the rate at which the crater-free area decreases is . Since it is proportional to that area itself, we have for some constant . By dividing both side of the equation by , we have the equation for , , where .
|