Science:Math Exam Resources/Courses/MATH101/April 2009/Question 03 (a)
{{#incat:MER QGQ flag|{{#incat:MER QGH flag|{{#incat:MER QGS flag|}}}}}}
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q1 (j) • Q2 • Q3 (a) • Q3 (b) • Q4 (a) • Q4 (b) • Q5 • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q7 (c) • Q8 (a) • Q8 (b) •
Question 03 (a) |
|---|
|
Let be the finite region in the -plane bounded by , and . |
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
|---|
|
The coordinates of the centroid are computed using the formulas and where |
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
|---|
|
The first point with where crosses the x-axis is at . Hence we have that and . Thus, we have
The x-coordinate of the centroid are computed using the formulas
To solve this, we use integration by parts. Let
Then,
Lastly, for the other coordinate, we have
Now we use the double angle formula
to see that
and so the centroid is
completing the proof. |
{{#incat:MER CT flag||
}}
