Science:Math Exam Resources/Courses/MATH100/December 2013/Question 04 (a)
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q2 (a) • Q2 (b) • Q2 (c) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 • Q6 • Q7 • Q8 (a) • Q8 (b) • Q8 (c) • Q8 (d) • Q9 • Q10 (a) • Q10 (b) • Q11 •
Question 04 (a) 

ShortAnswer Question. Simplify your answer as much as possible and show your work. Use Newton's method with an initial approximation of to find , where is the second approximation to the root of the equation . 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hints below. Read the first one and consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! If after a while you are still stuck, go for the next hint. 
Hint 1 

Newton's method involves drawing the tangent line of a function at a certain xvalue. 
Hint 2 

The intercept of the linear approximation at serves as . 
Checking a solution serves two purposes: helping you if, after having used all the hints, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. Newton's method is defined by , where is the th approximation to a root of . We are given that . Applying the equation above,
