Science:Math Exam Resources/Courses/MATH307/December 2005/Question 06 (a)
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q2 (a) • Q2 (b) • Q3 (a) • Q3 (b) • Q3 (c) • Q3 (d) • Q3 (e) • Q3 (f) • Q3 (g) • Q4 (a) • Q4 (b) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q8 (a) • Q8 (b) • Q8 (c) •
Question 06 (a) |
---|
Consider the differential equation (a) For what values of is the system stable, neutrally stable or unstable? |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Science:Math Exam Resources/Courses/MATH307/December 2005/Question 06 (a)/Hint 1 |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. To determine if a system is stable, neutrally stable or unstable, look at the eigenvalue. A system is: - stable if - neutrally stable (or asymptotically stable) if - unstable if any eigenvalue
and thus
stable if: ; this implies that neutrally stable if . Since -1<0, this occurs for any the system is never unstable because -1 <0 |