Science:Math Exam Resources/Courses/MATH307/December 2005/Question 04 (a)
{{#incat:MER QGQ flag|{{#incat:MER QGH flag|{{#incat:MER QGS flag|}}}}}}
• Q1 (a) • Q1 (b) • Q2 (a) • Q2 (b) • Q3 (a) • Q3 (b) • Q3 (c) • Q3 (d) • Q3 (e) • Q3 (f) • Q3 (g) • Q4 (a) • Q4 (b) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q8 (a) • Q8 (b) • Q8 (c) •
Question 04 (a) |
|---|
|
Show that where and . Hint:
|
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
|---|
|
Science:Math Exam Resources/Courses/MATH307/December 2005/Question 04 (a)/Hint 1 |
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
|---|
|
Let Remember Taylor series: Note that etc. A similar computation gives us that Hence Next, let
We now use the hint. Let
and
then as
we have via the hint,
By the rules of matrix exponentiation, we have
As , we have
where e = e1 is the Euler number, and d is some other finite value. Thus, Comparing with M = eAeB we would need that which is impossible. Hence, . |
{{#incat:MER CT flag||
}}
