Science:Math Exam Resources/Courses/MATH307/December 2005/Question 01 (a)
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q2 (a) • Q2 (b) • Q3 (a) • Q3 (b) • Q3 (c) • Q3 (d) • Q3 (e) • Q3 (f) • Q3 (g) • Q4 (a) • Q4 (b) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q8 (a) • Q8 (b) • Q8 (c) •
Question 01 (a) |
---|
Compute the LU decomposition of the matrix |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Science:Math Exam Resources/Courses/MATH307/December 2005/Question 01 (a)/Hint 1 |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. U can be found using row reduction rules on A until an upper triangular matrix is found. L is found by multiplying the inverses of the elementary matrices used to get from A to U.
Subtract the first line twice from the second round to obtain Next, add the second row to the thrid
Thus, we obtain And to get L: Reversing the row operations we obtain Then, by construction, |