Science:Math Exam Resources/Courses/MATH152/April 2016/Question A 29
{{#incat:MER QGQ flag|{{#incat:MER QGH flag|{{#incat:MER QGS flag|}}}}}}
• QA 1 • QA 2 • QA 3 • QA 4 • QA 5 • QA 6 • QA 7 • QA 8 • QA 9 • QA 10 • QA 11 • QA 12 • QA 13 • QA 14 • QA 15 • QA 16 • QA 17 • QA 18 • QA 19 • QA 20 • QA 21 • QA 22 • QA 23 • QA 24 • QA 25 • QA 26 • QA 27 • QA 28 • QA 29 • QA 30 • QB 1(a) • QB 1(b) • QB 1(c) • QB 1(d) • QB 2(a) • QB 2(b) • QB 2(c) • QB 2(d) • QB 3(a) • QB 3(b) • QB 3(c) • QB 4(a) • QB 4(b) • QB 4(c) • QB 4(d) • QB 5(a) • QB 5(b) • QB 5(c) • QB 5(d) • QB 6(a) • QB 6(b) • QB 6(c) •
Question A 29 |
|---|
|
The matrix below represents rotation in 3D about a line through the origin.
Find a vector in the direction of the line of rotation. |
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
|---|
|
Consider the eigenvector. The direction vector of the rotation is just the vector unchanged after rotation, i.e., |
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
|---|
|
If a vector lies in the line of rotation, after multiplying the rotational matrix on the vector, the vector stays the same. That is to say if we denote this vector by , then we have
Equivalently we are looking for eigenvector corresponding to eigenvalue 1. We need to solve characteristic equation
That is By row reduction we have Thus and , i.e., So the eigenvector is which is the vector direction of axis. |
{{#incat:MER CT flag||
}}
