MATH101 A April 2024
• Q1 • Q2 • Q3 • Q4 • Q5 • Q6 • Q7 • Q8 • Q9 • Q10 • Q11 • Q12 • Q13 • Q14 • Q15 • Q16 (a) • Q16 (b) • Q17 (a) • Q17 (b) • Q17 (c) • Q17 (d) • Q18 (a) • Q18 (b) • Q18 (c) • Q19 • Q20 (a) • Q20 (b) • Q20 (c) •
[hide]Question 18 (a)
|
Let
(a) Find the coefficients so that, for some
Hint: Start by expressing as a sum of simpler functions.
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you?
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it!
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
- If you are stuck on a problem: Read the solution slowly and as soon as you feel you could finish the problem on your own, hide it and work on the problem. Come back later to the solution if you are stuck or if you want to check your work.
- If you want to check your work: Don't only focus on the answer, problems are mostly marked for the work you do, make sure you understand all the steps that were required to complete the problem and see if you made mistakes or forgot some aspects. Your goal is to check that your mental process was correct, not only the result.
|
[show]Solution
|
Found a typo? Is this solution unclear? Let us know here. Please rate my easiness! It's quick and helps everyone guide their studies.
Following the hint, let's look for such that

Following steps similar to those of Question 15, we find . We must now notice that each summand on the right-hand side of

is the closed form of a geometric series . Recall that this series converges to , as long as . Let's figure out how to express each summand as a series separately, since we are allowed to recombine them using Theorem 3.5.13 of [CLP].
For the first, we have

For the second, we have

and we will analyse both radii of convergence in part (b) . It follows then that

Therefore the sequence of coefficients is .
|
|
Math Learning Centre
- A space to study math together.
- Free math graduate and undergraduate TA support.
- Mon - Fri: 12 pm - 5 pm in MATH 102 and 5 pm - 7 pm online through Canvas.
Private tutor
|