Science:Math Exam Resources/Courses/MATH100/December 2016/Question 09 (b) (ii)
{{#incat:MER QGQ flag|{{#incat:MER QGH flag|{{#incat:MER QGS flag|}}}}}}
• Q1 (a) • Q1 (b) • Q1 (c) • Q2 (a) • Q2 (b) • Q2 (c) • Q2 (d) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q8 • Q9 (a) (i) • Q9 (a) (ii) • Q9 (a) (iii) • Q9 (b) (i) • Q9 (b) (ii) • Q9 (b) (iii) • Q9 (c) (i) • Q9 (c) (ii) • Q9 (c) (iii) • Q10 (a) • Q10 (b) • Q11 (a) • Q11 (b) • Q12 • Q13 (a) • Q13 (b) • Q14 (a) • Q14 (b) •
Question 09 (b) (ii) |
|---|
|
Let . (ii) Find all intervals where is increasing. |
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
|---|
|
is increasing on if on the interval. Be careful that the function must be defined at the intervals that you choose for monotonicity. |
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
|---|
|
From part (i), we have . Note that the function is defined when and and its derivative is defined when and . This implies that on the domain of , we have
so the sign of is determined by the sign of . Indeed, we have when and when However, we note that is defined on and is defined on Therefore, is increasing on . |
{{#incat:MER CT flag||
}}
