Science:Math Exam Resources/Courses/MATH100/December 2011/Question 01 (j)
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q1 (j) • Q1 (k) • Q1 (l) • Q1 (m) • Q1 (n) • Q2 (a) • Q2 (b) • Q3 (a) • Q3 (b) • Q4 (a) • Q4 (b) • Q5 (a) • Q5 (b) • Q5 (c) • Q5 (d) • Q5 (e) • Q6 • Q7 • Q8 •
Question 01 (j) 

ShortAnswer Questions. Put your answer in the box provided but show your work also. Each question is worth 3 marks, but not all questions are of equal difficulty. Full marks will be given for correct answers placed in the box, but at most 1 mark will be given for incorrect answers. Unless otherwise stated, it is not necessary to simplify your answers in this question. Find f’(x), where 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! 
Hint 

Can we use the power rule here? Why, or rather, why not? 
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. In this case we need to use logarithmic differentiation, indeed it is impossible to use the power rule since there is an as exponent. We cannot differentiate it in the same way we do for exponential functions since we take the power of x and not e or another constant. Hence we need to use logarithmic differentiation. First set then taking the logarithm on both sides we find Now keeping in mind that y is a function of x, we can take the derivatives on both sides and get The lefthand side is simply while the righthand side gives, using the product rule, Putting everything back together, we get and thus Replacing y by we finally get 