MATH312 December 2008
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q2 (a) i • Q2 (a) ii • Q2 (a) iii • Q2 (a) iv • Q2 (b) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q6 (c) • Q6 (d) •
[hide]Question 05 (b)
|
Alice wants Bob to send her a secret integer P between 0 and 1250 using RSA encryption with key (so the exponent is 1189 and the modulus is 1271, it is way too small to be really secure, but basic RSA encryption and decryption methods still work of course).
(b) To obtain P from C, Alice first computes an inverse of e modulo , since she created the key, she knows that (in fact, the prime factorization of n can easily be found since it is so small). Compute such a d.
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you?
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it!
|
[show]Hint
|
Euclidean algorithm to the rescue! Do this with the number and 1189 and then back substitute.
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
- If you are stuck on a problem: Read the solution slowly and as soon as you feel you could finish the problem on your own, hide it and work on the problem. Come back later to the solution if you are stuck or if you want to check your work.
- If you want to check your work: Don't only focus on the answer, problems are mostly marked for the work you do, make sure you understand all the steps that were required to complete the problem and see if you made mistakes or forgot some aspects. Your goal is to check that your mental process was correct, not only the result.
|
[show]Solution
|
We use the Euclidean algorithm to find an inverse. We do this with the numbers 1189 and
.
This gives
and back substituting gives
Hence the value of d can be chosen to be since .
|
Click here for similar questions
MER QGQ flag, MER RH flag, MER RS flag, MER RT flag, MER Tag RSA, Pages using DynamicPageList3 parser function, Pages using DynamicPageList3 parser tag
|
Math Learning Centre
- A space to study math together.
- Free math graduate and undergraduate TA support.
- Mon - Fri: 12 pm - 5 pm in MATH 102 and 5 pm - 7 pm online through Canvas.
|