MATH312 December 2008
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q2 (a) i • Q2 (a) ii • Q2 (a) iii • Q2 (a) iv • Q2 (b) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q6 (c) • Q6 (d) •
[hide]Question 03 (a)
|
Determine, using no moduli other than 111 in your final answer, all integers x that satisfy the following linear congruence.
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you?
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it!
|
[show]Hint
|
First, isolate for 0, factor then argue that one of the terms has to be divisible by 37. Solve that congruence then lift back to 111.
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
- If you are stuck on a problem: Read the solution slowly and as soon as you feel you could finish the problem on your own, hide it and work on the problem. Come back later to the solution if you are stuck or if you want to check your work.
- If you want to check your work: Don't only focus on the answer, problems are mostly marked for the work you do, make sure you understand all the steps that were required to complete the problem and see if you made mistakes or forgot some aspects. Your goal is to check that your mental process was correct, not only the result.
|
[show]Solution
|
Proceeding as suggested in the hint, we have
Now, as , we see that we must have
if the above congruence is to hold. Now, isolating gives
We can crunch through the Euclidean algorithm to find the inverse of 7 but here I will use a clever time saving trick. The right hand side is equivalent to
Thus, multiplying by the inverse of 7 on both sides yields
.
Thus, modulo 111, the solutions are
seen by adding multiples of 37 to 32.
|
Click here for similar questions
MER QGQ flag, MER RH flag, MER RS flag, MER RT flag, MER Tag Euclidean algorithm, MER Tag Modular arithmetic, Pages using DynamicPageList3 parser function, Pages using DynamicPageList3 parser tag
|
Math Learning Centre
- A space to study math together.
- Free math graduate and undergraduate TA support.
- Mon - Fri: 12 pm - 5 pm in MATH 102 and 5 pm - 7 pm online through Canvas.
|