Science:Math Exam Resources/Courses/MATH220/December 2011/Question 01 (f)
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q2 (a) • Q2 (b) • Q3 • Q4 • Q5 (a) • Q5 (b) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q8 •
Question 01 (f) |
---|
State the strong principle of mathematical induction. |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Mathematical induction involves wanting to prove statements over all natural numbers. How do we do this? |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. Strong mathematical induction is a method to prove a statement S(n) is true for all natural numbers n. It is given by the following. Suppose that for every natural number n, that we have the implication Then for every natural number n, the statement S(n) is true. |