MATH104 December 2014
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q1 (j) • Q1 (k) • Q1 (l) • Q1 (m) • Q1 (n) • Q2 • Q3 (a) • Q3 (b) • Q3 (c) • Q4 • Q5 (a) • Q5 (b) • Q5 (c) • Q5 (d) • Q5 (e) • Q5 (f) • Q6 •
Question 05 (d)
|
Let . Find the intervals on which is concave upward.
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you?
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it!
|
Hint
|
Find the intervals on which the second derivative exists and is nonzero.
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
- If you are stuck on a problem: Read the solution slowly and as soon as you feel you could finish the problem on your own, hide it and work on the problem. Come back later to the solution if you are stuck or if you want to check your work.
- If you want to check your work: Don't only focus on the answer, problems are mostly marked for the work you do, make sure you understand all the steps that were required to complete the problem and see if you made mistakes or forgot some aspects. Your goal is to check that your mental process was correct, not only the result.
|
Solution
|
Found a typo? Is this solution unclear? Let us know here. Please rate my easiness! It's quick and helps everyone guide their studies.
Recall that when , is concave up; likewise, when , is concave down. So what we need to do is find the intervals on which exists and is non-zero. From above, we know that , and indeed, if and only if or . Since for all , we have that . Using the quadratic formula, we find that this quadratic equation has no real roots. Therefore, there is no where . Now, we make a table as before for , noting that does not exist at . This gives us two intervals, namely and where is nonzero and defined:
|
|
|
|
+ |
+
|
|
+ |
+
|
|
+ |
+
|
|
+ |
+
|
|
Concave Up |
Concave Up
|
So on both and , is concave up.
|
Click here for similar questions
MER QBS flag, MER QGH flag, MER QGQ flag, MER RT flag, MER Tag Concavity, Pages using DynamicPageList3 parser function, Pages using DynamicPageList3 parser tag
|
Math Learning Centre
- A space to study math together.
- Free math graduate and undergraduate TA support.
- Mon - Fri: 12 pm - 5 pm in LSK 301&302 and 5 pm - 7 pm online.
Private tutor
|