Science:Math Exam Resources/Courses/MATH104/December 2014/Question 01 (n)
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q1 (j) • Q1 (k) • Q1 (l) • Q1 (m) • Q1 (n) • Q2 • Q3 (a) • Q3 (b) • Q3 (c) • Q4 • Q5 (a) • Q5 (b) • Q5 (c) • Q5 (d) • Q5 (e) • Q5 (f) • Q6 •
Question 01 (n) 

Let . Find the second order Taylor polynomial for with its center at . 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! 
Hint 

Recall the formula for second order Taylor polynomial at a point . 
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. The second order Taylor expansion of a function at point is given by:
Here we take , and . Using the power rule, find the first and second derivatives of : and thus, Putting all the values into the second order Taylor expansion formula, we obtain: 