Science:Math Exam Resources/Courses/MATH102/December 2019/Question 01
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 • Q2 • Q3 • Q4 (a) • Q4 (b) • Q4 (c) • Q4 (d) • Q5 (a) • Q5 (b) • Q5 (c) • Q5 (d) • Q6 • Q7 • Q8(a) • Q8(b) • Q8(c) • Q9(a) • Q9(b) • Q10 • Q10(a) • Q10(b) • Q11 • Q12 •
Question 01 |
---|
Consider the function where and are constants. Find . Your answer may depend on the parameters and ; you do not need to simplify. |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Use the product rule, power rule, and the chain rule. |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. First we apply the product rule.
According to the power rule, the derivative of is . For the derivative of , we use the chain rule: . We get the final result: . |