Science:Math Exam Resources/Courses/MATH312/December 2012/Question 01 (e)
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q2 (a) • Q2 (b) • Q2 (c) • Q2 (d) • Q3 • Q4 • Q5 •
Question 01 (e) |
---|
Short answer questions: Each question carries 6 marks, your answers should quote the results being used and show your work. Find all solutions for |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
We need to find the inverse of 7 modulo 13, possible since they are coprime. Use the Euclidean algorithm. |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. Following the hint, we compute the inverse of 7 modulo 13. Then
and back substituting gives . Thus, the inverse of 7 modulo 13 is 2. Hence which completes the question. |