Science:Math Exam Resources/Courses/MATH307/April 2009/Question 07 (a)
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q2 (a) • Q2 (b) • Q3 (a) • Q3 (b) • Q3 (c) • Q3 (d) • Q4 (a) • Q4 (b) • Q4 (c) • Q4 (d) • Q5 (a) • Q5 (b) • Q6 (a) • Q6 (b) • Q6 (c) • Q6 (d) • Q7 (a) • Q7 (b) • Q8 (a) • Q8 (b) • Q8 (c) • Q8 (d) •
Question 07 (a) 

Given the recurrence relation with the initial condition and , (a) Solve the recurrence relation. (Give a general scalar expression for in terms of n, a, and b). 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! 
Hint 

Science:Math Exam Resources/Courses/MATH307/April 2009/Question 07 (a)/Hint 1 
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. We can start by finding the first few values of this relation. With these, we can guess at a scalar expression for and then use induction to prove that it is correct. By inspection, we come up with the following: . Proof: : : : , which is what we found using the recurrence. Assume that for , the expression is true. We now want to prove that the expression is true for . Using the recurrence relation and our induction hypothesis, we find that , which is the expression we had come up with. So for all integers n, . 