Science:Math Exam Resources/Courses/MATH105/April 2017/Question 03
{{#incat:MER QGQ flag|{{#incat:MER QGH flag|{{#incat:MER QGS flag|}}}}}}
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q1 (j) • Q1 (k) • Q1 (l) • Q1 (m) • Q1 (n) • Q2 (a) • Q2 (b) • Q3 • Q4 (a) • Q4 (b) • Q5 (a) • Q5 (b) • Q5 (c) • Q5 (d) • Q5 (e) • Q6 (a) • Q6 (b) •
Question 03 |
|---|
|
Use the method of Lagrange Multipliers to find the maximum value of the utility function , subject to the constraint , where and . You do not need to justify your answer. Note that a solution that does not use the method of Lagrange Multipliers will receive no credit, even if the answer is correct. |
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
|---|
|
The method of Lagrange multipliers states that a maximum in the interior of the domain must occur at a place where the following equations are satisfied: |
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
|---|
|
The method of Lagrange multipliers states that a maximum in the interior of the domain must occur at a place where the following equations are satisfied: |
{{#incat:MER CT flag||
}}
