MATH100 December 2018
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q2 (a) • Q2 (b) • Q2 (c) • Q3 • Q4 • Q5 (a) • Q5 (b) • Q5 (c) • Q5 (d) • Q6 • Q7 • Q8 • Q9 • Q10 • Q11 (a) • Q11 (b) •
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you?
|
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it!
|
[show]Hint
|
Use Pythagoras' theorem to relate the positions of the two particles.
|
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
- If you are stuck on a problem: Read the solution slowly and as soon as you feel you could finish the problem on your own, hide it and work on the problem. Come back later to the solution if you are stuck or if you want to check your work.
- If you want to check your work: Don't only focus on the answer, problems are mostly marked for the work you do, make sure you understand all the steps that were required to complete the problem and see if you made mistakes or forgot some aspects. Your goal is to check that your mental process was correct, not only the result.
|
[show]Solution
|
Let be the distance from the origin to the particle and let be the distance from the origin to the particle . Also Let be the distance between and . Notice that and are functions of time and we shall thus write them as respectively.
By the given information, we have units/min and units/min. Using the initial positions, then we see that and . We can relate these two functions by Pythagoras' theorem: we have , and therefore
Now, we will first determine the time at which the distance between the particles is units. We do this by setting and solving for . This gives
and therefore (we can ignore the negative root since time cannot be negative).
Next, we want to find when . By differentiating both sides of the equation , we get . Now we can plug in and , which gives .
|
Click here for similar questions
MER QGH flag, MER QGQ flag, MER QGS flag, MER RT flag, Pages using DynamicPageList3 parser function, Pages using DynamicPageList3 parser tag
|
Math Learning Centre
- A space to study math together.
- Free math graduate and undergraduate TA support.
- Mon - Fri: 12 pm - 5 pm in MATH 102 and 5 pm - 7 pm online through Canvas.
|