Trig Integrals
This article is part of the MathHelp Tutoring Wiki |
There are two parts of the techniques of calculating the integral of a given trigonometry.
A. I= ∫( sinmx cosn dx) (m and n are positive numbers)
A1: n is odd (n=1,3,5,7.... m doesn't matter)
Consider I= ∫(sin2x cos3x dx)
= ∫( sin2x cos2x*cosx dx)
use sin2x+cos2 =1
then cos2x=1-sin2x
I= ∫(sin2x(1-sin2x)cosx dx)
use u=sin(x), so that du=cos(x)
I= ∫(u2 (1-u2)du)
=∫((u2-u4)du)
=c+u3/3-1/5 u5
=c+sin3x-1/5 sin5
What to do? Isolate cos(x), use cos2x =1-sin2x
Denote: sin(x)=u
A2:m is odd, n doesn't matter consider
I= ∫ (sin5x*cos3x dx)
=∫(sin4x * cos3xsinx dx)
=- ∫(sin4x*cos3x* cosx' dx)
u=cosx so that sin2x=1-u2
=-∫((1-u*u)2 u3 du
=-∫(1+u4-2u2)*u3du)
=-∫((u3+u7-2u5) du)
=c-u4/4-u8/8+2u6/6
what to do? Isolate sin(x) use sin2x=1-cos2x
substitution u(x)=cos(x)
get Integral of some polynomial u
A3: Both m,n are even numbers
consider
I = ∫( sin2x cos2x dx)
since cos 2x=1-2sin2x=2cos2x-1
cos2x= (cos2x+1)/2, sin2x=(1-cos2x)/2
I= 1/4 * ∫(cos2x+1)(1-cos2x) dx
=1/4 * ∫((1-cos22*2x)dx)
=1/4 *x-1/4 ∫((1+cos4x)/2)dx
=1/4 *x-1/2*x-1/8 ∫(cos4x dx)
=-1/4*x-1/8sin4x *1/4
=-1/4*x-1/32* sin4x
B ∫(tanmx*secnxdx) (m,n are positive integers)
B1:n is even
I= ∫(tanx*sec2x dx)
keep sec2x alone, sec2x=(tanx)'
I=∫ (tanx*(tanx)' dx)
let u=tanx
I= ∫(u dx)
=c+1/2 * u2
=1/2 tanx2+c
what to do: Isolate a factor sec2x and denote u=tanx
B2: n is odd
I= ∫(tan2x secx*dx)
Isolate tanxsecx
I= ∫(tanx (tanx secx)dx)
=∫(tanx(secx)' dx) u=secx
I= ∫(tanx*du)
=ln |secx|+c
- Back to Integral Calculus
- Back to MathHelp