Separable Equations
This article is part of the MathHelp Tutoring Wiki |
Definition: A separable equation is a first order equation that can be factored as a function of x times a function of y. dy/dx=g(x)*f(y)
General Solution: Q: If we know dy/dx=g(x)*f(y), we want to write y in terms of x.
Solution strategy:
Assume f(y) ++=++ 0 and h(y)=1/f(y)
so dy/dx=g(x)*f(y)=g(x)/h(y)
Formally cross multiplication
h(y)*dy=g(x)*dx
Integrate ∫ h(y)dy=∫ g(x)dx
Q1: dy/dx=x2*y, then what is y in terms of x?
A: if y ++=++ 0,
dy/y=x2*dx
∫ dy/y=∫ x2*dx
ln|y|=x3/3+c
y=__+__ex3/3+c
Q2:
dy/dx=(6x2)/(2y+cosy)
A:
∫ (2y+cos(y))dy=∫ 6x2*dx
y2+sin(y)=2x3+c
- Back to Integral Calculus
- Back to MathHelp