Second Order Linear Equations With Constant Coefficient
This article is part of the MathHelp Tutoring Wiki |
The equation is like this:
1*. a*y' '(t)+b*y'(t)+c*y(t)=0 and a,b,c are constants a=++++0 Our goal is to find y(t)
Step 1:
Look for a solution in the form
2*. y(t)= e^pt (p is a real number to be determined)
Plug 2* into 1*
y'(t)= e^pt *(pt)'
y'(t)=p*e^pt
y(t)=p^2*e^pt
a*(p^2)*(e^pt)+b*p*e^pt+c*e^pt=0
e^pt(ap^2+bp+c)=0
a*p^2+b*p+c=0
delta=b^2-4ac
Theorem:
(a) if delta>0
y(t)= c1*e^(p1*t)+c2*e^(p2*t)
p1,p2=-b+/- squr(delta)
c1 and c2 are constants of integration
(b) if delta=0,
p1,p2=-b/2a
y(t)=C1*e^p1t+C2*t*e^p2t
- Back to Differential Calculus
- Back to MathHelp