Science:Math Exam Resources/Courses/MATH 180/December 2017/Question 11 (d)
• Q1 (a) • Q1 (b) • Q1 (c) • Q2 (a) • Q2 (b) • Q2 (c) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 • Q7 • Q8 (a) • Q8 (b) • Q9 (a) • Q9 (b) • Q9 (c) • Q10 (a) • Q10 (b) • Q10 (c) • Q11 (a) • Q11 (b) • Q11 (c) • Q11 (d) • Q11 (e) • Q12 (a) • Q12 (b) • Q13 (a) • Q13 (b) • Q13 (c) • Q13 (d) •
Question 11 (d) |
---|
The function is an example of a Gamma distribution, a function that may be used to describe certain probabilities.
(d) The second derivative of is Identify all the intervals where is concave up, and all the intervals where is concave down.
|
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
Recall that a function is concave up if its second derivative is positive, and is concave down if its second derivative is negative. |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. We proceed similarly as in part (c). By the Hint, we consider the sign of , which is the same as the sign of Clearly, this is positive when and is negative when .
Therefore, is concave up on the interval where , that is on . Similarly, is concave down on the interval where , or . Answer: is and . |