Science:Math Exam Resources/Courses/MATH307/April 2005/Question 03 (a)
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q2 (a) • Q2 (b) • Q2 (c) • Q2 (d) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q4 (d) • Q5 • Q6 (a) • Q6 (b) • Q7 • Q8 (a) • Q8 (b) • Q8 (c) • Q8 (d) • Q8 (e) • Q8 (f) • Q9 (a) • Q9 (b) • Q9 (c) • Q9 (d) • Q9 (e) •
Question 03 (a) |
---|
Let P be a real symmetric n x n matrix such that P2 = P. Also let R = In - 2P be the matrix that reflects a vector across a plane. (a) Show that R is an orthogonal matrix and that R2 = In. |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
R is an orthogonal matrix if RTR = RRT = I. Calculate these matrix products and use that P is real symmetric, i.e. PT = P. |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies.
Now since P is real symmetrical Also the transpose of the identity matrix, I is itself So expanding
As and
Similarily for
|