Using both hints, we can rewrite the statement into equivalent statements as follow
![{\displaystyle {\begin{aligned}\left[(P\Rightarrow Q)\Rightarrow R\right]\lor (\lnot P\lor Q)&\equiv [(\lnot P\lor Q)\Rightarrow R]\lor (\lnot P\lor Q)\\&\equiv \lnot (\lnot P\lor Q)\lor R\lor (\lnot P)\lor Q\\&\equiv (P\land \lnot Q)\lor R\lor (\lnot P)\lor Q\\&\equiv [P\lor R\lor (\lnot P)\lor Q]\land [(\lnot Q)\lor R\lor (\lnot P)\lor Q]\end{aligned}}}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/0dcbc35426ca5f0639bdd41815c9a9846effeaa4)
The last equivalent statement is of the type A AND B with

which both are tautologies since they contain P OR not P and respectively not Q OR Q. So if both A and B are tautologies, then so is the conjunction of them into the statement A AND B.