Science:Math Exam Resources/Courses/MATH110/April 2019/Question 01 (i)
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q2 (a)(i) • Q2 (a)(ii) • Q2 (a)(iii) • Q2 (b) • Q2 (c) • Q3 • Q4 (a) • Q4 (b) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 • Q7 (a) • Q7 (b) • Q7 (c) • Q8 • Q9 • Q10 (a) • Q10 (b) •
Question 01 (i) |
---|
Suppose is differentiable everywhere and assume it has a local maximum at the point . Does the function have a local extreme value at ? Justify your answer. |
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? |
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! |
Hint |
---|
The new function is differentiable at also. Therefore if it has a local max, then its derivative must be zero. |
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.
|
Solution |
---|
Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. Since is differentiable everywhere, . Note also that since is a point. The derivative of is
Evaluated at we have Here, we know that because we are told that , and we also know that has a local maximum at , which means that . Since the derivative is not zero, does not have a local extreme at . |