Integration by Parts
This article is part of the MathHelp Tutoring Wiki |
The general formula to do integration by parts:
∫u*dv=uv-∫v*du or ∫f(x)g'(x)dx=f(x)g(x)-∫g(x)f'(x)dx
EXAMPLE 1: Find the integral of xsin(x)
Step 1. Define f(x), g'(x), f'(x), g(x)
f(x)=x
g'(x)=sin(x)
f'(x)=1
g(x)=-cos(x)
Then using the formula, we can integrate.
∫xsin(x)dx=-xcos(x)-∫-cos(x)dx
= -xcos(x)+∫ cos(x)dx = -xcos(x)+ sin(x)+C **Don't forget the constant!**
EXAMPLE 2:
Find the integral of ∫x2ln(x)dx
Step 1. Define f(x), g'(x), f'(x), g(x)
f(x)=ln(x)
g'(x)=x2
f'(x)=1/x
g(x)=1/3 x3
∫ln(x)*x2 dx= 1/3 ln(x)x3-∫ 1/x *1/3 x3 dx
Then using the formula, we can integrate.
= 1/3 ln(x)x3 - 1/12 ln(x) x4+C ***Don't forget Constant***