Derivatives of logarithms and exponentials
This article is part of the MathHelp Tutoring Wiki |
General formula:
Examples:
Q: Find of
A:
f'(x)=d/dx(x3+ln x5)
=d/dx(x3)+d/dx(ln x5) =3x2+5/x
Note: d/dx(ln x5)=5/x
General Formula:
d/dx(ecx)= cecx
Example:
Q1: find f'(x),if
(1) f(x)=5e-2x
(2) f(x)=e-x/5
A1:
(1) f'(x)=d/dx (5e-2x)
=5d/dx (e-2x)
=5*(-2)e-2x
=-10e-2x
(2) f'(x)=d/dx(e-5/x)
=-1/5 e-5/x
Q2: find f'(x) if f(x)=3x
A2:
f'(x)=d/dx(3x)
=d/dx(eln3x)
= d/dx(exln3)
=ln3 * exln3
=ln3* 3x
General formula:
d/dx(bx)= (lnb)*bx **Example:**
Q1:if at some time you have $2000 in an account paying an interest rate of 6% (continuous compounding), what is the instantaneous rate of change in your money account?
Answer
Recall: A= Pert
dA/dt= d/dt(Prt)= P d/dt(ert)=Prert
=r A(t)
=2000*6%=120
Q2: Find the point where the graph of y=3e5x+2 has a slope of 5
Answer: Slope= dy/dx=d/dx(3e5x+2)
= 3d/dx(e5x)+0
=15e5x+0
=15 e5x
To find the point we set
dy/dx =5= 15e5x
e5x=1/3
ln(e5x)=ln(1/3)
5x= -ln3
x=(-1/5)*ln3
The y coordinate is y=3eln(1/3)/5+2
=3eln(1/3)+2
=3*1/3+2=3
So the point is ((-1/5)ln3,3)
- Back to Differential Calculus
- Back to MathHelp