{{#w4grb_rate:}} Hard Easy
For a , b > 0 {\displaystyle a,b>0} , solving the equation ln ( x ) = 2 ln ( a ) − 3 ln ( b ) {\displaystyle \ln(x)=2\ln(a)-3\ln(b)} for x {\displaystyle x} leads to
(a) x = e 2 a − 3 b {\displaystyle x=e^{2a-3b}}
(b) x = 2 a − 3 b {\displaystyle x=2a-3b}
(c) x = a 2 / b 3 {\displaystyle x=a^{2}/b^{3}}
(d) x = a 2 b 3 {\displaystyle x=a^{2}b^{3}}
(e) x = ( a / b ) 6 {\displaystyle x=(a/b)^{6}}
ln ( x ) = 2 ln ( a ) − 3 ln ( b ) {\displaystyle \ln(x)=2\ln(a)-3\ln(b)}
ln ( x ) = ln ( a 2 ) − ln ( b 3 ) = ln ( a 2 / b 3 ) {\displaystyle \ln(x)=\ln(a^{2})-\ln(b^{3})=\ln(a^{2}/b^{3})}
e ln ( x ) = e ln ( a 2 / b 3 ) {\displaystyle e^{\ln(x)}=e^{\ln(a^{2}/b^{3})}}
x = a 2 / b 3 {\displaystyle x=a^{2}/b^{3}}
The correct answers is C)