Approximate Integration
This article is part of the MathHelp Tutoring Wiki |
Question: We need to approximate integral from a to b (f(x)*dx)
A. Midpoint Rule
Step1: Divide interval [a,b] in "n" identical subintervals.
delta x= (b-a)/n
X1*=(Xo+X1)/2, X2*=(X1+X2)/2, Xi*=(Xi-1+Xi)/2
so
X1=X0+deltaX
X2=X1+deltaX
integration from a to b (f(x)*dx)= deltaX* f(X1*)+deltaX*f(X2*)+...+deltaX*f(Xn*)
=Mn=deltaX*(f(X1*)+f(X2*)+f(X3*)+...+f(Xn*))
Error in midpoint rule approximation
Note: integration from a to b (f(x)*dx)=exact result
Mn is the approximation of integration from a to b f(x)*dx
Em=|Mn-integration from a to b (f(x)*dx)
Theorem: If |f (x)|<=k for any x, a<=x<=b then Em<=k(b-a)3/(24M2)
Example: Write M4 for integration from 0 to pi/2 (cosx*dx) delta x=pi/2/4=pi/8
X0=a=0,
X1=0+pi/8, X1*= (X0+X1)/2=pi/16
X2=0+2*pi/8, X2*=(X1+X2)/2=3pi/16
X3=0+3pi/8, X3*=(X2+X3)/2=5pi/16
X4=pi/2, X4*=7pi/16
M4= pi/8*(f(x1*)+f(x2*)+f(x3*)+f(x4*))
=pi/8*(cosp/16+cos3pi/16+cos 5pi/16+cos 7pi/16)'
- Back to Integral Calculus
- Back to MathHelp