Let

so that we want
such that

From Hint 1 (and setting L=1) we have that
are orthogonal i.e.,

where the overbar indicates the complex conjugate

We can get the coefficients of
using this orthogonality. Take the inner product with each

.
If
we use integration by parts:
with
,
to obtain
![{\displaystyle {\begin{aligned}c_{n}&=\left[{\frac {x}{-2\pi in}}e^{-2\pi inx}\right]_{0}^{1}+\int _{0}^{1}{\frac {1}{2\pi in}}e^{-2\pi inx}dx\\&=\left[-{\frac {x}{2\pi in}}e^{-2\pi inx}-{\frac {1}{4\pi ^{2}i^{2}n^{2}}}e^{-2\pi inx}\right]_{0}^{1}\\&=\left[-{\frac {x}{2\pi in}}e^{-2\pi inx}+{\frac {1}{4\pi ^{2}n^{2}}}e^{-2\pi inx}\right]_{0}^{1}\\&=\left[\left({\frac {1}{4\pi ^{2}n^{2}}}-{\frac {x}{2\pi in}}\right)e^{-2\pi inx}\right]_{0}^{1}\\&=\left[\left({\frac {1}{4\pi ^{2}n^{2}}}-{\frac {1}{2\pi in}}\right)e^{-2\pi in(1)}\right]-\left[\left({\frac {1}{4\pi ^{2}n^{2}}}-0\right)e^{-2\pi in(0)}\right]\\&=\left({\frac {1}{4\pi ^{2}n^{2}}}-{\frac {1}{2\pi in}}\right)e^{-2\pi in}-{\frac {1}{4\pi ^{2}n^{2}}}\\&=\left({\frac {1}{4\pi ^{2}n^{2}}}-{\frac {1}{2\pi in}}\right)(1)-{\frac {1}{4\pi ^{2}n^{2}}}\\&=-{\frac {1}{2\pi in}}\\&={\frac {i}{2\pi {}n}}\end{aligned}}}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/f47a14a29785b6dfdda2214b8d80efca8d50b2de)
Here we see the importance of having
, otherwise the coefficient diverges using this formula. If n = 0,
![{\displaystyle c_{0}=\int _{0}^{1}f(x)dx=\left[{\frac {1}{2}}x^{2}\right]_{0}^{1}={\frac {1}{2}}}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/71991cf2631300fc1f1200909e45bf03af24adb0)
Therefore, we have all the coefficients for the series.