z = − 1 / 2 + i 3 / 2 {\displaystyle z=-1/2+i{\sqrt {3}}/2} :
a = − 1 / 2 , b = 3 / 2 {\displaystyle a=-1/2,b={\sqrt {3}}/2} , it has negative x-value and positive y-value so it should be in the second quadrant. Suppose the angle between z {\displaystyle z} and x {\displaystyle x} -axis is θ {\displaystyle \theta } , we have tan θ = b a = − 3 {\displaystyle \tan \theta ={\frac {b}{a}}=-{\sqrt {3}}} .
It's known tan x = − tan ( π − x ) {\displaystyle \tan x=-\tan(\pi -x)} and tan ( π / 3 ) = 3 {\displaystyle \tan(\pi /3)={\sqrt {3}}} , θ ∈ [ 90 ∘ , 180 ∘ ] {\displaystyle \theta \in [90^{\circ },180^{\circ }]} . Thus the angle between z {\displaystyle z} and x {\displaystyle x} -axis is 2 π 3 {\displaystyle {\frac {2\pi }{3}}}