First note that the function is defined at
in the third piece of piecewise function, and
When
, let’s see the left limit and right limit at point
as follows:
![{\displaystyle f(1^{+}):=\lim _{x\rightarrow 1^{+}}f(x)=\lim _{x\rightarrow 1^{+}}x^{2}+1=1^{2}+1=2}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/c659a950a3602ff6da405cd0655ed4a7b458fd52)
and
![{\displaystyle f(1^{-}):=\lim _{x\rightarrow 1^{-}}f(x)=\lim _{x\rightarrow 1^{-}}k(x-1)+2=2.}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/2139a6d429c91d5c794c88cff345ca448e41e945)
We get that the left limit is equal to right limit, thus
![{\displaystyle \lim _{x\rightarrow 1}f(x)}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/28093e0377d1dc3a6cc2e77df64d8c9b7a8d73fc)
exists. And note that
![{\displaystyle \lim _{x\rightarrow 1}f(x)=2=f(1)}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/96f3a52baafca7066cb25e5b0799fd74fd9d5039)
which is the reason that
![{\textstyle f(x)}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/e0a982c6635ab3b98d9e12d5f5a8533359bcb38a)
is continuous at
![{\textstyle x=1}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/90d7674ebb4f37b2b53330ff398abb0069f83e2f)
. So we choose
![{\textstyle \color {blue}{\text{(iv)}}}](https://wiki.ubc.ca/api/rest_v1/media/math/render/svg/6abd553d47868d113189eabe5ad264b79f498759)
.