Following the hints, we first complete the squares in the numerator and denominator:
We then make the substitution u = x − 2 ⟹ d u = d x {\displaystyle u=x-2\implies du=dx} :
Next, we make the trigonometric substitution u = 4 sin ( t ) ⟹ d u = 4 cos ( t ) d t , t = arcsin ( u / 4 ) {\displaystyle u=4\sin(t)\implies du=4\cos(t)\,dt,\ t=\arcsin(u/4)} :
By the Pythagorean identity, 16 − 16 sin 2 ( t ) = 16 ( 1 − sin 2 ( t ) ) = 16 cos 2 ( t ) {\displaystyle 16-16\sin ^{2}(t)=16(1-\sin ^{2}(t))=16\cos ^{2}(t)} , so
Using the identity sin 2 ( t ) = 1 − cos ( 2 t ) 2 {\displaystyle \sin ^{2}(t)={\frac {1-\cos(2t)}{2}}} , we obtain