Let f ( x ) {\displaystyle f(x)} and g ( x ) {\displaystyle g(x)} be integrable functions. If
∫ 3 5 f ( x ) d x = 2 , ∫ 0 5 f ( x ) d x = 3 , ∫ 0 3 g ( x ) d x = 7 , {\displaystyle {\begin{aligned}\int _{3}^{5}f(x)dx=2,\ \ \int _{0}^{5}f(x)dx=3,\ \ \int _{0}^{3}g(x)dx=7,\end{aligned}}} then find and simplify ∫ 0 3 ( f ( x ) + g ( x ) ) d x {\displaystyle \int _{0}^{3}(f(x)+g(x))dx} .