Introduction
Let's imagine that we have a quantity f that is a function of the coordinates, momentaand possibly time as well. Let's take its total time derivative to get
There is lots of different notation for the Poisson brackets. To wit, it is often written with braces { } rather than brackets [ ], probably to avoid confusion with the quantum mechanical commutator to which it is intimately related. Since we call them Poisson brackets it seems natural to use brackets rather than braces.
If the function f is an integral of the motion we have
In particular if f doesn't explicitly depend on time, we find that that
Definition of the Poisson Brackets
We can define the Poisson brackets for any two quantities
Properties of the Poisson Brackets
The brackets have the following properties
We can also look at the time derivative of the brackets
If one of the functions f and g is a momentum or a coordinate we have
Furthermore we can look at the Poisson brackets among the momenta and coordinates themselves
We also have the important relation
known as Jacobi's identity.
Integrals of the Motion
Let's say the functions f and g are integrals of the motion, then we can prove that [f, g] is also an integral of the motion.
so
where I have used Jacobi's identity to replace the final term in the first equation. Rearranging yields
The right-hand side vanishes because f and g are integrals of the motion. This result is known as Poisson's theorem.
An Example with Angular Momentum
The angular momentum about the x-axis and y-axis are given by
Let's calculate
where we only used the properties of the brackets themselves and the results for the brackets among the momenta and coordinates.
Quantum Mechanics
The Poisson bracket defined here is connected to the commutator of quantum mechnanics. Specifically, the commutator is
Classically the commutator would vanish because real numbers commute. Quantum mechanically think of A and B as "operators" that act on vectors or functions (you can imagine these as matrices that don't necessarily commute). We take
and scale all of the results from the algebra of the Poisson brackets. For example
One way to make sense of these relations is to think of the operators acting on a particular function of position and time (the wave function), so we have
which tells us that the momentum operator is
Classically the Hamiltonian of a system often looks like
so we have in quantum mechanics
Classically, the Hamiltonian tells quantities how to evolve forward in time. It is similar in quantum mechanics
we have
so if the Hamiltonian commutes with a particular quantity and that quantity is not an explicit function of time, the quantity is conserved by the motion even in quantum mechanics.
Again let's assume that these operators act on a function ψ and that f is an integral of the motion
As with the momentum we have that
so
This result is known as the Schrödinger equation.