Science:Math Exam Resources/Courses/MATH103/April 2016/Question 01 (d)
Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.
• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q2 (a) • Q2 (b) • Q2 (c) • Q2 (d) • Q3 • Q4 (a) • Q4 (b) • Q5 (a) • Q5 (b) • Q6 (a) (i) • Q6 (a) (ii) • Q6 (a) (iii) • Q6 (a) (iv) • Q6 (a) (v) • Q6 (b) (i) • Q6 (b) (ii) • Q6 (b) (iii) • Q7 (a) (i) • Q7 (a) (ii) • Q7 (b) (i) • Q7 (b) (ii) • Q8 (a) • Q8 (b) • Q8 (c) • Q8 (d) • Q9 (a) • Q9 (b) • Q9 (c) • Q9 (d) •
Question 01 (d) 

Compute at . 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! 
Hint 

Consider the Fundamental theorem of Calculus and Chain rule. 
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. Recall that part 1 of the Fundamental Theorem of Calculus is . Let . The integral can then be written as a composition of two functions:
where So, by the chain rule, we have The Fundamental Theorem of Calculus implies that and We finally obtain 
Please rate how easy you found this problem:
Current user rating: 67/100 (3 votes) Hard Easy 