• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q1 (j) • Q2 (a) • Q2 (b) • Q3 (a) • Q3 (b) • Q4 (a) • Q4 (b) • Q4 (c) • Q4 (d) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q7 • Q8 •
Question 04 (c) 

Determine whether the following improper integral is convergent or divergent. Remember to justify your answer. 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! 
Hint 

Find a standard integral which you know converges or diverges and compare this integral to that standard integral. 
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. First notice that attempting to evaluate this integral is long and tedious. Instead we attempt to find an integral which we know converges or diverges, and compare our integral to that integral. Observe that on the given interval, we have that and so . Hence,
and since we know that the integral converges whenever , we know that our integral does indeed converge since . 