• Q1 (a) • Q1 (b) • Q1 (c) • Q2 (a) • Q2 (c) • Q2 (d) • Q3 (a) • Q3 (b) • Q3 (c) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q8 • Q9 (a) (i) • Q9 (a) (ii) • Q9 (a) (iii) • Q9 (b) (i) • Q9 (b) (ii) • Q9 (b) (iii) • Q9 (c) (i) • Q9 (c) (ii) • Q9 (c) (iii) • Q10 (a) • Q10 (b) • Q11 (a) • Q11 (b) • Q12 • Q13 (a) • Q13 (b) • Q14 (a) • Q14 (b) • Q2 (b) •
Question 09 (a) (ii) 

Let . (ii) Give all xintercepts of . 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! 
Hint 

An xintercept of a function is a solution to the equation . 
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. The xintercepts of a function are the points at which vanishes. In other words, they are solutions to the equation . Since on the domain of the function, the denominator doesn't vanish, we have . Since both points are in the domain of the given function (see part (a)), the xintercepts are . 