• Q1 (a) • Q1 (b) • Q1 (c) • Q1 (d) • Q1 (e) • Q1 (f) • Q1 (g) • Q1 (h) • Q1 (i) • Q1 (j) • Q2 (a) • Q2 (b) • Q2 (c) • Q2 (d) • Q2 (e) • Q3 (a) • Q3 (b) • Q3 (c) • Q3 (d) • Q3 (e) • Q3 (f) • Q4 (a) • Q4 (b) • Q4 (c) • Q5 (a) • Q5 (b) • Q5 (c) • Q6 (a) • Q6 (b) • Q7 (a) • Q7 (b) • Q8 (a) • Q8 (b) • Q8 (c) • Q8 (d) • Q8 (e) • Q8 (f) • Q9 (a) • Q9 (b) • Q10 • Q11 (a) • Q11 (b) •
Question 08 (d) 

Let . Note is the natural logarithmic function, also denoted (d) Find the vertical asymptotes of the graph of , if they exist. Justify your answer. 
Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? 
If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! 
Hint 

What values should be checked? 
Checking a solution serves two purposes: helping you if, after having used the hint, you still are stuck on the problem; or if you have solved the problem and would like to check your work.

Solution 

Found a typo? Is this solution unclear? Let us know here.
Please rate my easiness! It's quick and helps everyone guide their studies. Since the function is defined for all the only possible vertical asymptote is as . Now, as the numerator becomes large and negative, while the denominator becomes small and positive. Hence This asymptote at is the only vertical asymptote. 