DIHEDRAL GROUP

1. DIHEDRAL GROUP D_n

Definition 1. For each $n \ge 3$, a group G is called Dihedral group of order n if it is generated by two elements a, b such that o(a) = n, o(b) = 2 and $ba = a^{-1}b$.

It can be shown that for each $n \ge 3$, D_n is a group of order 2n and is unique up to isomorphism. It can be thought as a group of rotations and reflections of a regular *n*-gons with *n* vertices where *a* is the rotation through angle $2\pi/n$ and *b* is the reflection. In this note, we will study the group D_4 and we will classify all non-abelian group of order 8.

2. The Group D_4 .

The dihedral group of order 4 is the following group:

$$G = \langle a, b \rangle$$
 with $o(a) = 4, o(b) = 2$, and $ba = a^{3}b$

Example 1. The subgroup of invertible 2×2 matrices over \mathbb{R} generated by $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and

 $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ is a } D_4 \text{ group.}$

Theorem 1 (Properties of D_4 .). If G is a D_4 group then G is non-commutative group of order 8 where each element of D_4 is of the form $a^i b^j, 0 \le i \le 3, 0 \le j \le 1$.

Proof. $G = \langle a, b \rangle = \{a^{i_1}b^{j_1}a^{i_2}b^{i_2}...a^{i_n}b^{i_n} : i_t, j_t \in \mathbb{Z}\}$. Since $ba = a^3b$ hence elements of G are of the form a^nb^m where $n, m \in \mathbb{Z}$. Since $a^4 = b^2 = e$ and $a^{-1} = a^3, b^{-1} = b$, every elements of G is of the form $a^ib^j, 0 \le i \le 3, 0 \le j \le 1$.(Hence G has at most 8 elements.)

Now since o(a) = 4, e, a, a^2, a^3 are all distinct and b, ba, ba^2, ba^3 are all distinct. Since $a \neq b \neq e, a^{-1} = a^3, b^{-1} = b$, we see that

$$\{e, a, a^2, a^3\} \cap \{b, ba, ba^2, ba^3\} = \emptyset$$

Hence $G = \{e, a, a^2, a^3, b, ba, ba^2, ba^3\}$ has exactly 8 elements. Finally, suppose ab = ba then $ab = a^3b$ then $a^2 = e$ which is a contradiction. Hence G is noncommutative.

It is now clear that the group D_4 is unique up to isomorphism. Now we consider all subgroups of

 D_4 . By Lagrange's Theorem, its proper nontrivial subgroups can have order 2 or 4. In D_4 ,

$$o(a) = 4, o(a^{2}) = 2, o(a^{3}) = 4, o(b) = 2$$
$$(ab)^{2} = abab = aa^{3}bb = e.$$
$$(a^{2}b)^{2} = a^{2}ba^{2}b = a^{2}(a^{3}b)ab = abab = e.$$
$$(a^{3}b)^{2} = a^{3}ba^{3}b = a^{3}(a^{3}b)a^{2}b = a^{2}ba^{2}b = e.$$

- $H_1 = \{e, a^2\}, H_2 = \{e, b\}, H_3 = \{e, ab\}, H_4 = \{e, a^2b\}, H_5 = \{e, a^3b\}$ are subgroups of order 2.
- $T_1 = \{e, a, a^2, a^3\}, T_2 = \{e, a^2, b, a^2b\}, T_3 = \{e, ab, a^2, a^3b\}$ are subgroups of order 4.

Exercise 1. Prove that these subgroups together with $\{e\}$, D_4 are all subgroups of D_4 . Draw the subgroup lattice of D_4 . Prove that H_5 is a normal subgroup of T_3 and T_3 is a normal subgroup of d_4 but H_5 is not a normal subgroup of D_4 .

Exercise 2. Prove that the center of D_4 , $Z(D_4)$, is H_1 .(Hint: the center of a group is a normal subgroup.)

Exercise 3. Prove that $D_4/Z(D_4)$ is isomorphic to the Klein 4 group.

3. The Quaternion Group Q_8

Definition 2. A group G is called quaternion group if

$$G = \langle a, b \rangle, o(a) = 4, a^2 = b^2, ba = a^3b$$

Example 2. The subgroup of invertible 2×2 matrices over \mathbb{C} generated by $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & i \end{pmatrix}$

 $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ is a quaternion group.

Exercise 4. Prove that a quaternion group is a noncommutative group of order 8 whose elements are of the form $a^i b^j$, $0 \le i \le 3, 0 \le j \le 1$.

Now it is easy to see that the quaternion group is unique up to isomorphism. We denote it by Q_8

$$Q_8 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$

Exercise 5. Verify that $o(a^2) = 2$, $o(a^3) = 4$, $o(ab) = o(a^2b) = o(a^3b) = 4$. Verify that $H_0 = \{e\}, H_1 = \{e, a^2\}, H_2 = \{e, a, a^2, a^3\}, H_3 = \{e, ab, a^2, a^3b\}, H_4 = \{e, b, a^2, a^2b\}, Q_8$ are all subgroups of Q_8 . Verify that every proper subgroup of Q_8 is cyclic.

Exercise 6. By considering elements of order 4, explain why D_4 is not isomorphic to Q_8 .

Theorem 2. There are only 2 noncommutative groups of order $8: D_4$ and Q_8 .

Proof. Let G be a noncommutative group of order 8. Since |G| is even, there is an element $u \neq e$ such that $u = u^{-1}$ i.e. $u^2 = e$. If $x^2 = e$ for all $x \in G$ then G is commutative, contradiction. Let $a \in G$ be such that $a^2 \neq e$. Since o(a)|8, o(a) = 4 or 8. If o(a) = 8 then G is cyclic, contradiction. Hence o(a) = 4. Let $H = \{e, a, a^2, a^3\}$ then H is a normal subgroup of G (why?).Let $b \in G$ be such that $b \notin H$ then $G = H \cup Hb, H \cap Hb = \emptyset$ hence

$$G = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\} = < a, b >$$

Since *H* is normal, $bab^{-1} \in H$. If $bab^{-1} = e$ then a = e, contradiction. If $bab^{-1} = a$ then ab = ba then *G* is commutative(why?), contradiction. If $bab^{-1} = a^2$ then $ba^2b^{-1} = (bab^{-1})^2 = a^4 = e$ then $a^2 = e$, contradiction. Hence $bab^{-1} = a^3$. and so $ba = a^3b$. Since $|G/H| = 2, b \notin H$ hence o(Hb) = 2 and $b^2 \in H$. If $b^2 = a$ or a^3 then *b* has order 8, which implies that *G* is commutative, contradiction. Hence $b^2 = e$ (i.e. *b* has order 2, $G \cong D_4$) or $b^2 = a^2$ (i.e. $G \cong Q_8$.)