DIHEDRAL GROUP

1. Dihedral Group D_{n}

Definition 1. For each $n \geq 3$, a group G is called Dihedral group of order n if it is generated by two elements a, b such that $o(a)=n, o(b)=2$ and $b a=a^{-1} b$.

It can be shown that for each $n \geq 3, D_{n}$ is a group of order $2 n$ and is unique up to isomorphism. It can be thought as a group of rotations and reflections of a regular n-gons with n vertices where a is the rotation through angle $2 \pi / n$ and b is the reflection. In this note, we will study the group D_{4} and we will classify all non-abelian group of order 8 .

2. The Group D_{4}.

The dihedral group of order 4 is the following group:

$$
G=<a, b>\text { with } o(a)=4, o(b)=2, \text { and } b a=a^{3} b
$$

Example 1. The subgroup of invertible 2×2 matrices over \mathbb{R} generated by $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is a D_{4} group.
Theorem 1 (Properties of D_{4}.). If G is a D_{4} group then G is non-commutative group of order 8 where each element of D_{4} is of the form $a^{i} b^{j}, 0 \leq i \leq 3,0 \leq j \leq 1$.

Proof. $G=<a, b>=\left\{a^{i_{1}} b^{j_{1}} a^{i_{2}} b^{i_{2}} \ldots a^{i_{n}} b^{i_{n}}: i_{t}, j_{t} \in \mathbb{Z}\right\}$. Since $b a=a^{3} b$ hence elements of G are of the form $a^{n} b^{m}$ where $n, m \in \mathbb{Z}$. Since $a^{4}=b^{2}=e$ and $a^{-1}=a^{3}, b^{-1}=b$, every elements of G is of the form $a^{i} b^{j}, 0 \leq i \leq 3,0 \leq j \leq 1$.(Hence G has at most 8 elements.)
Now since $o(a)=4, e, a, a^{2}, a^{3}$ are all distinct and $b, b a, b a^{2}, b a^{3}$ are all distinct.Since $a \neq b \neq$ $e, a^{-1}=a^{3}, b^{-1}=b$, we see that

$$
\left\{e, a, a^{2}, a^{3}\right\} \cap\left\{b, b a, b a^{2}, b a^{3}\right\}=\emptyset
$$

Hence $G=\left\{e, a, a^{2}, a^{3}, b, b a, b a^{2}, b a^{3}\right\}$ has exactly 8 elements.
Finally, suppose $a b=b a$ then $a b=a^{3} b$ then $a^{2}=e$ which is a contradiction. Hence G is noncommutative.

It is now clear that the group D_{4} is unique up to isomorphism. Now we consider all subgroups of D_{4}. By Lagrange's Theorem, its proper nontrivial subgroups can have order 2 or 4 . In D_{4},

$$
\begin{aligned}
o(a)=4, o\left(a^{2}\right) & =2, o\left(a^{3}\right)=4, o(b)=2 \\
(a b)^{2} & =a b a b=a a^{3} b b=e \\
\left(a^{2} b\right)^{2}=a^{2} b a^{2} b & =a^{2}\left(a^{3} b\right) a b=a b a b=e \\
\left(a^{3} b\right)^{2}=a^{3} b a^{3} b & =a^{3}\left(a^{3} b\right) a^{2} b=a^{2} b a^{2} b=e
\end{aligned}
$$

- $H_{1}=\left\{e, a^{2}\right\}, H_{2}=\{e, b\}, H_{3}=\{e, a b\}, H_{4}=\left\{e, a^{2} b\right\}, H_{5}=\left\{e, a^{3} b\right\}$ are subgroups of order 2.
- $T_{1}=\left\{e, a, a^{2}, a^{3}\right\}, T_{2}=\left\{e, a^{2}, b, a^{2} b\right\}, T_{3}=\left\{e, a b, a^{2}, a^{3} b\right\}$ are subgroups of order 4.

Exercise 1. Prove that these subgroups together with $\{e\}, D_{4}$ are all subgroups of D_{4}. Draw the subgroup lattice of D_{4}. Prove that H_{5} is a normal subgroup of T_{3} and T_{3} is a normal subgroup of d_{4} but H_{5} is not a normal subgroup of D_{4}.

Exercise 2. Prove that the center of $D_{4}, Z\left(D_{4}\right)$, is H_{1}.(Hint: the center of a group is a normal subgroup.)
Exercise 3. Prove that $D_{4} / Z\left(D_{4}\right)$ is isomorphic to the Klein 4 group.

3. The Quaternion Group Q_{8}

Definition 2. A group G is called quaternion group if

$$
G=<a, b>, o(a)=4, a^{2}=b^{2}, b a=a^{3} b
$$

Example 2. The subgroup of invertible 2×2 matrices over \mathbb{C} generated by $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$ is a quaternion group.
Exercise 4. Prove that a quaternion group is a noncommutative group of order 8 whose elements are of the form $a^{i} b^{j}, 0 \leq i \leq 3,0 \leq j \leq 1$.

Now it is easy to see that the quaternion group is unique up to isomorphism. We denote it by Q_{8}

$$
Q_{8}=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}
$$

Exercise 5. Verify that $o\left(a^{2}\right)=2, o\left(a^{3}\right)=4, o(a b)=o\left(a^{2} b\right)=o\left(a^{3} b\right)=4$. Verify that $H_{0}=$ $\{e\}, H_{1}=\left\{e, a^{2}\right\}, H_{2}=\left\{e, a, a^{2}, a^{3}\right\}, H_{3}=\left\{e, a b, a^{2}, a^{3} b\right\}, H_{4}=\left\{e, b, a^{2}, a^{2} b\right\}, Q_{8}$ are all subgroups of Q_{8}. Verify that every proper subgroup of Q_{8} is cyclic.
Exercise 6. By considering elements of order 4 , explain why D_{4} is not isomorphic to Q_{8}.
Theorem 2. There are only 2 noncommutative groups of order $8: D_{4}$ and Q_{8}.
Proof. Let G be a noncommutative group of order 8 . Since $|G|$ is even, there is an element $u \neq e$ such that $u=u^{-1}$ i.e. $u^{2}=e$. If $x^{2}=e$ for all $x \in G$ then G is commutative, contradiction. Let $a \in G$ be such that $a^{2} \neq e$. Since $o(a) \mid 8, o(a)=4$ or 8 . If $o(a)=8$ then G is cyclic, contradiction. Hence $o(a)=4$. Let $H=\left\{e, a, a^{2}, a^{3}\right\}$ then H is a normal subgroup of G (why?).Let $b \in G$ be such that $b \notin H$ then $G=H \cup H b, H \cap H b=\emptyset$ hence

$$
G=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}=<a, b>
$$

Since H is normal, $b a b^{-1} \in H$. If $b a b^{-1}=e$ then $a=e$, contradiction. If $b a b^{-1}=a$ then $a b=b a$ then G is commutative(why?), contradiction. If $b a b^{-1}=a^{2}$ then $b a^{2} b^{-1}=\left(b a b^{-1}\right)^{2}=a^{4}=e$ then $a^{2}=e$, contradiction. Hence $b a b^{-1}=a^{3}$. and so $b a=a^{3} b$. Since $|G / H|=2, b \notin H$ hence $o(H b)=2$ and $b^{2} \in H$. If $b^{2}=a$ or a^{3} then b has order 8 , which impies that G is commutative, contradiction. Hence $b^{2}=e\left(\right.$ i.e. b has order $2, G \cong D_{4}$) or $b^{2}=a^{2}$ (i.e. $G \cong Q_{8}$.)

