Legionellosis

Andrew Lee

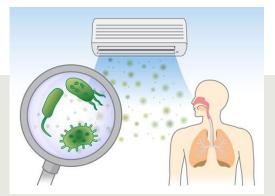
Bacteria Pathogenesis

Legionellosis is caused by Legionella bacteria

Most common Legionella strain: Legionella pneumophilia (1)

Characteristics:

- Gram-negative rods (shape can change to coccoid or filamentous depending on environment)(2)
- Survival temperature: 0-60 °C (Optimal: ~35 °C) (3)


Location: aquatic environments (2)

- Natural: lakes, ground water, soil, rivers
- Anthropogenic: water fountains, plumbing systems, air humidifiers, hot tubs

https://www.condair.co.uk/knowledgehub/legionnaires-disease-humidifierswhat-you-need-to-know

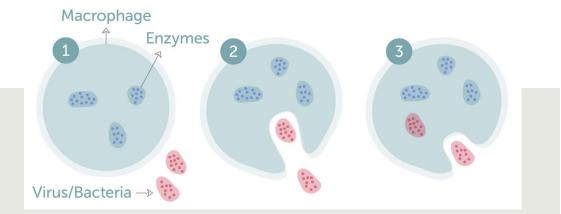
Legionella affects human lungs

https://www.hawaiipacifichealth.org/healthierhawaii/news/legionnaires-disease-what-youneed-to-know/

Transmission: inhaling/consumption of contaminated water droplets into lungs (4)

Symptoms: respiratory symptoms (eg. fever, cough, shortness of breath, and pneumonia) (5)

Infection life cycle mostly localized in alveolar macrophages in lungs (5)


This case: patient had recent asthma flare-up and used corticosteroid medication – compromised immune system, more susceptible to infection (6)

Characteristics that contribute to success in Legionella

- <u>Type 4 secretion system</u> and over 300 <u>effector proteins</u>: block phagosome maturation and lysosome fusion (5)
 - Bacteria don't need to move around in body to avoid degradation (so stay in alveolar macrophages in lungs)
- Quorum sensing (Lqs) system, transcription factor (LvbR), twin-arginine translocation system (Tat): allow biofilm formation (7)
 - Helps survival in aquatic systems
 - Biofilms: high resistance to antibiotics, metabolically active, and express virulence genes
 (8)
- Able to resist unfavorable environments
 - Starvation and environmental stress induce Legionella to transition from a metabolically active, replicating form to a motile, stress-resistant, transmissible form (9)

Legionella entry into host

- 1. Inhaled into lungs
- 2. Penetrates host epithelium using bacterial peptidylprolyl cistrans isomerase (PPIase) **Mip** (1)
- 3. Attaches to alveolar macrophages using its **flagella, pili**, and other proteins (10)
- 4. Binds complement receptors on alveolar macrophages to trigger engulfment (11)
- 5. Entry through receptor-mediated phagocytosis or coiling phagocytosis
 - Mediated by the host protein phosphatidylinositol 3 (PI-3)-kinase (1)

https://www.lumacyte.com/the-cyte-blog/2018/3/20/macrophages-the-first-responder

Other bacteria and host components improtant for entry

Bacteria

- Major outer membrane protein (**MOMP**) binds complement components C3 and C3bi (12)
- type 4 secretion system (T4SS) help entry and allow effectors to manipulate host cell processes (5)
 - eg. membrane transport systems, inhibiting host cell apoptosis, modulating host cell signaling pathways
- Proteins EnhC, LpnE, RtxA, LvhB2, and HtpB help entry (13, 14)

Host

 Binding of C3 and C3bi to complement receptors CR1 and CR3 on alveolar macrophages help initiate phagocytosis (12)

Legionella intracellular survival

Legionella-containing vacuole (LCV) is important for evading host defense (15) LCV formation and propagation (15)

- Legionella effectors regulate host small GTPases for LCV biogenesis
- Vacuolar ATPases pump H+ into LCV for acidification (16)
- T4SS blocks phagolysosomal fusion in LCVs to instead form ribosome-studded phagosomes, LCV recruits endoplasmic reticulum (ER) derived vesicles remodeling and resemble rough ER (17)
 - ER derived vesicles are rich in lipids and proteins such as Rab1, Rab2, and Rab6
- Ultimately creates a replication permissive compartment for Legionella (1)

Legionella replication

Obtain nutrients from ER for amino acids (main carbon source and mitochondria) (18)

Replication relies on host amino acid transporter solute carriers and the phagolysosomal transporter A (PhtA) (9)

Increase amino acid availability by

- Ubiquinate host proteins: Legionella proteins mimic ubiquitin ligases to catalyze protein degradation to release amino acids (19)
- Inhibit host translation
- Modulate autophagy

Other Legionella proteins for nutrient accumulation: chymotrypsin-like enzyme, caseinase, gelatinase, serum protein degrading protease, aminopeptidase, phosphatase, lipase, deoxyribonuclease, ribonuclease, cellulase, and starch hydrolysis enzymes (20)

Legionella induces cell lysis and escapes from cell

- Cytotoxicity and host cell lysis in response to nutrient depletion (21)
- Legionella changes from replicative to transmissive/virulent form (9)
 - Replicating Legionella: rod-shaped, slender, non-motile, wavy cell wall, and don't express motility or cytotoxicity-related genes
 - Virulent Legionella: rod-shaped, stubby ends containing poly-3-hydroxybutyrate (PHB), smooth thick cell wall, and express transmissivity-related genes
- Legionella T4SS protein intracellular multiplication T (Icm-T): induces pore formation, leading to cell lysis (9)

References

- 1. Newton HJ, Ang DK, van Driel IR, Hartland EL. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev. 2010 Apr;23(2):274-98. doi: 10.1128/CMR.00052-09.
- 2. Kanarek P, Bogiel T, Breza-Boruta B. Legionellosis risk-an overview of Legionella spp. habitats in Europe. Environ Sci Pollut Res Int. 2022 Nov;29(51):76532-76542. doi: 10.1007/s11356-022-22950-9.
- CDC Centers for Disease Control and Prevention. Hot Tubs [Internet]. CDC Centers for Disease Control and Prevention; 2022 Apr 2. Available from: https://www.cdc.gov/healthywater/swimming/swimmers/hot-tub-user-information.html
- 4. Girolamini L, Mazzotta M, Lizzadro J, et al. Sit bath systems: A new source of Legionella infection. PLoS One. 2020;15(11):e0241756.
- 5. Ziltener P, Reinheckel T, Oxenius A. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS. PLoS Pathog. 2016;12(4):e1005591.
- 6. Kanarek P, Bogiel T, Breza-Boruta B. Legionellosis risk-an overview of Legionella spp. habitats in Europe. Environ Sci Pollut Res Int. 2022 Nov;29(51):76532-76542. doi: 10.1007/s11356-022-22950-9.
- 7. Chauhan D, Shames SR. 2021. Pathogenicity and virulence of legionella: Intracellular replication and host response. Virulence 12:1122–1144
- 8. Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: An emerging battleground in Microbial Communities. Antimicrobial Resistance & Infection Control
- 9. Oliva G, Sahr T, Buchrieser C. The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism. Front Cell Infect Microbiol. 2018 Jan 19;8:3. doi: 10.3389/fcimb.2018.00003.
- Legionella and Coxiella. In: Ryan KJ. eds. Sherris & Ryan's Medical Microbiology, 8e. McGraw Hill; 2022. Accessed March 09, 2023. https://accessmedicine.mhmedical.com/content.aspx?bookid=3107§ionid=260928232
- 11. Winn WC Jr. Legionella. In: Baron S, editor. Medical Microbiology [Internet]. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
- 12. Yang Z, Chen Y, Zhang Q, Chen X, Deng Z. Major Outer Membrane Protein from Legionella pneumophila Inhibits Phagocytosis but Enhances Chemotaxis of RAW 264.7 Macrophages by Regulating the FOXO1/Coronin-1 Axis. Journal of immunology research. 2021;2021:9409777-11.
- 13. Meir A, Macé K, Lukoyanova N, et al. Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat Commun. 2020;11(1):2864. Published 2020 Jun 8. doi:10.1038/s41467-020-16681-z
- 14. Ge J, Shao F. Manipulation of host vesicular trafficking and innate immune defence by legionella Dot/Icm effectors. Cellular microbiology. 12/01/2011;13(12):1870-1880. doi: 10.1111/j.1462-5822.2011.01710.x.
- 15. Chauhan D, Shames SR. 2021. Pathogenicity and virulence of legionella: Intracellular replication and host response. Virulence 12:1122–1144.
- 16. Isberg RR, O'Connor TJ, Heidtman M. 2008. The legionella pneumophila replication vacuole: Making a cosy niche inside host cells. Nature Reviews Microbiology 7:13–24.
- 17. Lau HY, Ashbolt NJ. The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol. 2009 Aug;107(2):368-78. doi: 10.1111/j.1365-2672.2009.04208.x.
- 18. 0Kanarek P, Bogiel T, Breza-Boruta B. Legionellosis risk-an overview of Legionella spp. habitats in Europe. Environ Sci Pollut Res Int. 2022 Nov;29(51):76532-76542. doi: 10.1007/s11356-022-22950-9.
- 19. Khweek AA, Amer A. 2010. Replication of legionella pneumophila in human cells: Why are we susceptible? Frontiers in Microbiology 1.
- 20. White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom. 2019;5(6):e000273. doi:10.1099/mgen.0.000273
- 21. Lau HY, Ashbolt NJ. The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol. 2009 Aug;107(2):368-78. doi: 10.1111/j.1365-2672.2009.04208.x.